
Asymptotic calculation of the integral for small ~ gives 

t, = ~,.~ (rr/ri) ~ (62/~) ~/~, te = q/w (rr). 

The induction period t, shortens more rapidly as T r increases than does the isothermal evap- 
oration time re: 

t , N  N exp [ E ( I  + 

The e f f e c t i v e  a c t i v a t i o n  e n e r g y  f o r  t h e  e v a p o r a t i o n  i s  E ,  = E ( l  + 6 ~  -x)  and i s  d e p e n d e n t  on 
t h e  l e n g t h  o f  t h e  f i l a m e n t ,  which gove rns  6. For  a f i x e d  Tr ,  t h e  l i f e t i m e  i n c r e a s e s  r a p i d l y  
as  t h e  f i l a m e n t  s h o r t e n s ,  which  i s  due t o  t h e  t h e r m a l  c o n d u c t i o n ,  which  s u p p r e s s e s  t h e  g rowth  
of  t e m p e r a t u r e  i n h o m o g e n e i t i e s  in  a s h o r t  f i l a m e n t .  

Th i s  c a l c u l a t i o n  has  been p e r f o r m e d  w i t h  t h e  Thomson t h e r m o e l e c t r i c  e f f e c t  n e g l e c t e d .  
To e v a l u a t e  t h e  p a r a m e t e r  r a n g e  p e r m i t t i n g  t h a t  a p p r o x i m a t i o n ,  we c o n s i d e r  t h e  r a t i o  o f  t h e  
q u a n t i t i e s  Qk = Xd2T/dx 2 and Qs = s j d T / d x ,  which  gove rn  t h e  power in  t h e  d i s s i p a t i v e  and 
Thomson s o u r c e s  as a p p e a r i n g  in  t h e  h e a t - b a l a n c e  e q u a t i o n  (s  i s  t h e  Thomson c o e f f i c i e n t ,  
w h i l e  j = U/p~ i s  t h e  c u r r e n t  d e n s i t y ) .  We t a k e  QX ~ ~AT/~ 2, Qs ~ sUhT/~2P to  g e t  Qs/QX ~ 
U(s /pA) .  Here s /p~  f o r  c o n d u c t o r s  does  no t  exceed  5 .10  -5 V -1 ,  so f o r  U up t o  t h e  l e v e l  o f  
s e v e r a l  kV, Qs/QX i s  n e g l i g i b l y  s m a l l .  

There  i s  e x p e r i m e n t a l  e v i d e n c e  f o r  t h e  l a c k  o f  e f f e c t  f rom t h e  Thomson t h e r m o e l e c t r i c  
e f f e c t  f rom t h e  c o i n c i d e n c e  be tween t h e  c r i t i c a l  c h a r a c t e r i s t i c s  ( T , ,  j , ,  U, ,  t , )  f o r  d i r e c t  
and a l t e r n a t i n g  c u r r e n t s .  

The a u t h o r  i s  i n d e b t e d  t o  E. N. Rumanov f o r  a d i s c u s s i o n .  

i, 

2. 

3. 
4. 
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FLOW PAST A SLIM BODY OF REVOLUTION OF A STATIONARY SUPERSONIC FLOW 

OF A VIBRATIONALLY EXCITED GAS UNDER A SMALL ANGLE OF ATTACK 

A. N. Bogdanov and V. A. Kulikovskii UDC 533.6.01 

The flow past a body under an angle of attack is of interest within the context of the 
problem of stability of motion of a body in a gas medium. In ordinary gas dynamics the solu- 
tion of this problem within the slim body approximation is discussed in [i]. The variability 
of parameters of flow past the body, generated, for example, by nonequilibrium processes in 
the gas, may substantially affect the aerodynamic characteristics of the body. 

In the present study we consider flow past a slim body of revolution of a vibrationally 
excited gas at a small angle of attack. The solution obtained makes it possible to calculate 
the transverse force acting on the body, as well as the torque of this force with respect to 
the tip of the body. It seems that relaxation of vibrational excitation leads to a change 
in value, and for a sufficient amount of initial nonequilibrium - even a change of sign of 
the transverse force. The transverse force also acts on a pointed body (without a rounded 
slice), while in ordinary gas dynamics the linear theory provides a vanishing transverse 

force [I]. 

To investigate this problem the symmetry axis of the body of revolution is conveniently 
chosen to coincide with the x axis, and the stationary supersonic flow, unperturbed by the 
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body, is directed at an angle to this axis. In this case the flow does not possess axial 
symmetry, and depends substantially on the third cylindrical coordinate - the angle 8. It 
is assumed that the point x = 0 coincides with the tip of the body. 

The system of equations, describing the stationary nonaxially symmetric gas flow in 
cylindrical coordinates, is 

MoP u x + v v u + T w v o - -  + P u = O ,  

M~p uwx + vwy + ~ WWo -+- § 7 po = O, ( 1 ) 

i /geho) ' 

+ + = - 

Here u, v, and w are the gas velocity components along the x, y, and 0 axes, respectively, 
rendered dimensionless at the initial velocity value (at x = 0) of the flow unperturbed by 
the body; O, a, and p are the density, frozen speed of sound, and pressure, rendered dimension- 
less at its initial value (the pressure is still augmented by y - the adiabatic exponent); 
e k and e~ are the energy of vibrational degrees of freedom and equilibrium value relative to 
the square of the initial sound velocity, ~ is the reciprocal vibrational relaxation time, 
rendered dimensionless by the ratio of the initial velocity to the characteristic length of 
the body L; and M 0 = u0/a 0 (the initial parameter values are denoted by the subscripts 0 
in the following). The linear coordinates x and y introduced have been rendered dimension- 
less (with respect to L). 

For e~ and m one can use the equations [2] 

o) = k~p exp( - -  k~r - ~ )  L/~o, e~ = o~n/(exp (o~/r) --  l)/a~, (2 )  

where R is the gas constant, T is the uniform translational temperature, 8 k is a character- 
istic vibrational temperature, an~ kl, k 2 are positive constants depending on the gas proper- 
ties. The specific k i values are given in [2]. 

The problem considered of flow past a slim body of a stationary supersonic flow of a 
nonequilibrium gas under a small angle of attack ~ can be separated into two problems within 
the linear approximation (Fig. i) - the problem of flow past a slim body with an unperturbed 
velocity u a parallel to the symmetry axis of the body (the problem of axial flow past the 
body), and the problem of flow past a slim body with an unperturbed velocity u c, directed 
perpendicular to the symmetry axis of the body (the problem of transverse flow past the body) -- 
similarly to the way this is done in ordinary gas dynamics. In this case it is insignificant 
that the transverse flow can be subsonic, while the perturbations, carried in the transverse 
flow by the body, are not small in comparison with the velocity of transverse flow past the 
body: the solution of this problem is only part of the total solution. 

Let u* be the total flow velocity incident on the body. The following obvious relations 
hold (Fig. i) 

u ~ = u ' c o s = ,  u" = u ' s i n = .  (3 )  

In cylindrical coordinates the flow velocity unperturbed by the body (denoted by the 
superscript 0) is decomposed into the following components along the x, y, and 8 axes,respec- 
tively: 

u~ v ~  ~:cos8, m ~ 1 7 6  (4)  

The relaxation of vibrationally excited gas molecules leads to energy release, generating 
stagnation of the supersonic flow. When the flow reaches the speed of sound at some cross 
section of the flow, it generates the formation of shock waves and breakdown of the stationary 
flow character. A so-called thermal crisis is evolving, in avoiding which one must be con- 
fined to an initial nonequilibrium value corresponding to the dimensionless value. It must 
be small in comparison with unity, and, thus, in the given problem, in addition to the small 
parameter 6 one succeeds in introducing one more small parameter - the relative initial non- 
equilibrium 
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LU 

1.4 ~ u *  

~ ~40 I uc  

u ~ ( m , )  cos o 

X 

Fig. i Fig. 2 

eho - -  ehO 

We seek a solution of the problem in the form of asymptotic expansions 

= Uo~ + ~u,~o + aUo~ + . .., v=(Uo+~U~o)cosO+~v~+. . . ,  

w = - -  (u o = eU~o)sin O ~- &vo~ ~ . . . .  P = ~- - -  ~P~o + 5 P o r +  . . . .  ( 5 )  

p = t -  ep io+60ol  + . . . .  e ~ =  e~o+ ee~ lo+6e~o1+ . , .  

F o r  s m a l l  a n g l e s  o f  a t t a c k  

s i n ~ - - - ~ + O ( = 3 ) ,  c o s = = t - - y + O ( a 4 ) ,  

t h e r e f o r e ,  f r o m  E q s .  ( 3 ) ,  ( 4 )  we h a v e ,  a c c u r a t e l y  t o  t e r m s  o f  o r d e r  ~ 2  i n c l u s i v e l y ,  

~ 2  
c ~ c 

/.t o = t - -  T '  /2 0 = O~, U l O  = UlO , U l O  ~ UlOC~. 

Thus, one more small parameter appears in the analysis - the small angle of attack ~.  It is 
assumed that the quantities ~, 6, and e are of the same order of smallness. 

We turn now to determine the coefficients in expansions (5). The asymptotic expansion 
terms containing ~ describe the change in gas flow parameters due to energy release during 
relaxation of the vibrational degrees of freedom to the equilibrium state. We confine our- 
selves to calculating the principal term in e. For small angles of attack the difference 
between the x axis and the flow direction unperturbed by the body is a quantity of order 
(Fig. i). Since this study is confined to calculating the principal terms in expansions in 
small parameters, it can be assumed that the flow unperturbed by the body is a one-dimensional 
stationary supersonic flow in the direction of the x axis, implying that uz0 = ul0(x). To 
find the equations of this flow one must put 

0 O 0 0 v ~  p ~ = p ~ = u ~ = e k ~ = O .  

The system obtained from (I) can be transformed to the form 

p% 0 = 1, p0 = 1/? + 3'Io 2 (1 - -  u~ e~ = eho + Mo ~ (1 - -  u~ + ( t - - # 2 ) f ( ? - - t ) ,  

u ~  ~ = o~ ~ ( e ~  - -  ek )o. 

Substituting expansions (5) into this system, for the coefficients in ~ we have the relations 

where u10 is determined by the equation 

Mo ~ -  i 

w i t h  t h e  i n i t i a l  c o n d i t i o n  u ~ o ( O )  = 0 [following f r o m  t h e  c o n d i t i o n  u ~  = 1 ] .  T a k i n g  i n t o  
account the initial data, this equation makes it possible to determine 

u m =  exp ( - - e x ) - -  t ~< 0. ( 6 )  

In calculating the expansion coefficients in 6 it is convenient to introduce a function 
~, such that v0z = -~xy" We then find from system (i) 

i ~xo, uol = - -  qD~x, Poi = Mo~Oxx, wol = - -  -~ 
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and the function ~ is determined from the equation 

I i 
( ~o  ~ - ~ ) |  + (Mo ~ - ~ ) ~ r  - _(~ (~o~)~ + ~ r - 

oo (, +,( ,  + o 

transforming for m0 + 0 to the ordinary equation of small perturbations in the absence of 
axial symmetry [I] : 

(~o ~- ~)*.,~-7(~%)~-? oo=O. 

As men t ioned  abova ,  our  problem can be c o n s i d e r e d  as  a s e t  o f  p rob lems  of  a x i a l  and 
t r a n s v e r s e  f low p a s t  t h e  body,  t h e r e f o r e  t h e  f u n c t i o n  ~ i s  r e p r e s e n t e d  in  t h e  form of  a sum 
of  two t e rms ,  c o r r e s p o n d i n g  to  t h e  problems of  a x i a l  and t r a n s v e r s e  f l o w s :  

~(x, ~, 0)=O~(x, ~)+~o(x, v, o). 
The f u n c t i o n  ~c s a t i s f i e s  c o n d i t i o n  ( 7 ) ,  w h i l e  f o r  @a t h e  e q u a t i o n  i s  much s i m p l e r ,  s i n c e  Ca 
i s  i n d e p e n d e n t  of  0: 

( , e~o %)I a (M0~ t)[q)~ + . ( ~ ] ~ _  7(yq)u=)ui a - -  % I + (y- -  i) *~exp~ 7(yiy)u = O. (8) 

We show that the solutions of Eqs. (7) and (8) are interrelated. Differentiating (8) with 
respect to y and multiplying by cos 8, one obtains 

(r 0~)~ + ( ~ -  ~) [(~os or + o ~os or - (r o,~t,)~ - ~ .  

�9 ' , ' [(oos ~<co~0o:)~ 5~o~o.:1=o. + (oo~00:)~- o 0 ,  + ~ , ~ - , , . . o ~ , ~ . ,  o0:).  + _ 

Taking into account that 

y2 ~ 

we have 

( M g -  i)[(r o.~)~ + ~ (~os o . ; ) ] =  - (~os o ~ a ) . ~ -  } (~o~ o r  

- - %  l + ~ ( y - - l ) e ~ 0 e x p T  ~ (cosO.y)uu+ ~ 

u(cos  0"~)~oo - -  % I + ~(7 -- t)eho y~ (cos O*u)oo = O. 

Putting now in this equation 

~c= cos0~, (9) 
one o b t a i n s ,  w i t h i n  t h e  a c c u r a c y  of  Eq. ( 7 ) ,  t h a t  @ ~ @c. Thus,  r can be d e t e r m i n e d  from 
r u s i n g  Eq. ( 9 ) .  

In s o l v i n g  Eq. ( 8 ) ,  a s  i s  u s u a l l y  t h e  c a s e  i n  gas  dynamics ,  i t  i s  c o n v e n i e n t  t o  t r a n s -  
form to the new independent variables ~ and ~, such that 

In this case 

~+ ~, y ~ / I / ~  ~, �9 ~  |176 ~ V ' ~  = = - ~ -  ~. % =  - ~ ( ~ - r  

~ ' ~ (�88 ' t o " '  0"  '%),  r162 7(%~')~,=(M~ - I )  (O~)~--T" ~n--  ~-~ 
a (:i)a ) 

3 0 7  



In the new variables Eq. (8) acquires the form 

where 

A r  r  ~ r ); 
\ 

r = 0, ( 1 0 )  

~ ~ Oh' ( "2 Oh) 
A = o~0 ( 3 ' -  t ) -3 , ,XI~0 ~ p  ~; ,  B ---- - -  ~oo t + V ( ' , ' -  t)e~0 e~PT0  (,~Io ~ - - t ) .  

E qua t i on  (10) i s  l i n e a r ,  w h i l e  i t s  c o e f f i c i e n t s  a r e  i n d e p e n d e n t  o f  ~. This  e q u a t i o n  can 
be s o l v e d  by u s i n g  a L a p l a c e  t r a n s f o r m  in  t h e  v a r i a b l e  ~. Accord ing  to  t h e  u s u a l  r u l e s  of  
performing this transformation [3] we have 

r 1 7 6  (L  ~) ~ ~ ~  (s, ~), r  (L  $)--+ s ~  ~ (s, ~) - -  Ca (0, ~), 
a s r  (~, ~) ~ s 2 ~  ~ (s, ~) - s r  a (o, ~) - r  (o, ~). 

We assume vanishing initial conditions: 

0'~ (0, ~)=  r  (0, ~) = O. (11) 

The condition adopted does not imply that within the approximation considered there is no 
perturbation in the first characteristic emerging from the tip of the body, since 

For ~a we obtain the ordinary differential equation 

) 
which is usually solved as follows. Instead of Sa we introduce the new independent function 
z(s, ~): 

6~(~, ~)=~(~, Dexp(~). 

Instead of (12) we then have the following equation for z 

z ~ ; + T z ; - - s  2 i z = 0 ,  
B - ( M 0 ~ - - ~ ) ,  

which by the replacement 

Z= 
A A 

B-- (M~-- i )  s 

i s  r educed  to  t h e  B e s s e l  e q u a t i o n  of  z e r o t h  o r d e r  

- + ~ 7 ~  z;~ ~ ~--z=O. (13) 

The solution of Eq. (13) is well known [4], and is expressed in general form in terms of the 
modified Bessel functions of zeroth order K0, I0: 

7= c, (~)Ko (~-) + c~ (~)4 (~). 
The solution of interest to us must be restricted to ~ e ~, and consequently one must 

put C2(s) = 0. Returning to the variable ~ of the function Sa, we find 

exp (~) .  

' V '  - 8 -  (M~-- , ) ,  

Since our purpose is to determine the forces acting on the slim body, we consider the 
behavior of the solution for small ~. It is well known [4] that 

K o ( q )  ~ - l n ( r l / 2 ) ,  I 0 0 l ) -  i ,  V 1 -+ 0. ' (14)  

Assuming t h a t  s i s  s u f f i c i e n t l y  l a r g e ,  we expand t h e  e x p r e s s i o n  unde r  t h e  s i g n  of  t h e  
s q u a r e  r o o t  in  powers of  1 / s :  
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.4 = ~-~ 2(Mo ~ ~)~ r '  2(M~--~)" t B - - ( M ~ - - ~ ) ~  

We take into account the asymptote (14), as well as the representation of the exponential 
function by the series exp(s~) = I + s~ + .... and for ~ § 0 we obtain 

We turn now to inverting the Laplace transform of the function Sa. The original func- 

tion for the expression s~Aln(~)is a combination of the functions [3] exp(--A~)],2~.% 

Let C I have the original function g(~) [in gas dynamics g(~) is the so-called "source inten- 
sity function"], then by the rule of the representation product [3] we find 

0 

Selecting the principal term in y (for y § 0) and using (9), we find 

x 

qbr - - cosO-~yg(n)exp( - -  A ( x - -  nl)dn. 
0 

To d e t e r m i n e  g one must c o n s i d e r  t h e  boundary  c o n d i t i o n s  on t h e  s u r f a c e  of  t h e  s l i m  body.  
It is the nonleaking condition through the surface of the body and, if the generatrix of 
the body is Y = Y(x), it acquires the form 

~r~ = --~ (15) "/5" 

In any plane transverse to the secant of the body the transverse velocity is 

= (~o + ~ 0 )  cos 0 + ~0~ = ~ 0 + ~ o )  ~o~ 0 - 6 ~ .  

The axial velocity is 
a 

and equality (15) for the principal expansion terms is rewritten as 

(IDa c 6Yx = a cos O -- 6 ~u -- 60~u. 

The expressions obtained can be divided into two parts, corresponding to axial and 
transverse flows : 

y~ 0 ~ : 0 r . ------ xu, 0 a c o s O - - 8  zy. (16) 

The first equality in (16) corresponds to the boundary condition for axial flow past the 
slim body, and the second makes it possible to determine the function g. 

Replacing the variable of integration t = x - N in the expression for ~c and differ- 
entiating it with respect to x, we obtain 

) CI)x c = - - c o s 0 t ( y \ g ( 0 ) e x p ( - - i x ) - ~ j g ' ( x - - t ) e x p ( - - i t ) d t  . (17) 
0 

Returning to the variable ~ = x - t, following differentiation of (17) with respect to y 
and using the second equality of (16) we have 

exp (Ax) = g (0) + S g' (~) exp (An) d~, 
0 

whence it is seen that g(0) = 0 and Y(0) = 0 (the body contour is closed at the tip of the 
body). Now g1(x) acquires the form 

! 

gl (x) = a6 exp (-- Ax) (Y~ exp (Ax))~. ( 18 ) 

S u b s t i t u t i n g  (18)  i n t o  (17 ) ,  we f i n d  
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x 

r = - o~6 C~S o j (y~  (q) exp (A (~ - -  z)))~ d~ = - -  a6  cos 0 S (x) ( 1 9 )  
y ~g 

0 

( S  = ~y2 i s  t h e  a r e a  o f  t h e  t r a n s v e r s e  c r o s s  s e c t i o n  o f  t h e  b o d y ) .  

We turn now to determining the transverse force. The projection of the surface area 
element of the body, being orthogonal to the radius of the body, is L6Ydedx. The radial 
component of the force acting on this area element equals 

(P - Po) ~LfrdOdx. ( 2 0 )  

To obtain now the transverse force (directed parallel to the velocity u c of the transverse 
flow unperturbed by the body), it is necessary to multiply (20) by -cos @ and integrate over 
the whole surface of the body: 

N =  - -  S S ( P - -  Po)e c~ 
0 0 

We express the pressure at the subrace of the slim body p - P0 in terms of the velocity com- 
ponents of the gas flow past the body. For this we use the integral equation of motion 
along the stream lines (the Bernoulli integral) 

i ~ ~ t" ~ 1 ~ I 
Y ?M~ (u~ q- + w~) + J V dp = ~ ?Mo. (21  ) 

1 

According to (3)-(5) we have 

u 2 + v 2 + m 2 = ( t  + ~U,o + 6Uo~) = - a 2 ( t  + ~ulo) 2 + ( ( t  + eulo) c~ cos 0 + 5vol) 2 + ( -  (1 + SUlo) = s in  0 + 6Wol) 2. 

The boundary condition (15) gives 

v = (J + eUto) a cos 0 + 6vot = uSY~ = (1 + eU,o) 5Y~. 

The term corresponding to w is transformed by using (19), since 

6woi = 6 cD~ 

We find 

Thus, 

( i  + eUlo ) ~z s in  0 - -  6wet = (I ~- euio ) ~ s in  O + ~ (I)xo = 2 ( i  + euxo ) ~ s in  0. 

[ 

zP + v 2 + w ~ = (1 + e u~o + 6Uol) 2 + ( i  + eum)2(  (5 Y,)2 + (4 s in  z 0 - t ) a 2 ) ,  

and by (21) we obtain 

As a result 

i 2 U T Me (26 .oi + (S rx )  ~ + (4 s in  2 O - -  t )  ~z =) + 5po ~ = O. 

ape, ~ L = + 6r - -~  

This expression can be divided into two parts, corresponding to the axial and transverse 
flows : 

= I. 
We differentiate (19) with respect to x, and for y = 6Y(x) we have 

r - -  ---~ cos05S'  ( x ) -= - -2=cos0Yx .  x x - - - -  ~ y  

Since the flow unperturbed by the body takes place at an angle to the body axis, relax- 
ation of the vibrationally excited gas molecules in the unperturbed flow also leads to gen- 
eration of a pressure gradient in a direction perpendicular to the body axis. A transverse 
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force is consequently developed, acting on the body. The flow unperturbed by the body is a 
plane parallel flow. Let, on the surface of the body and at the point x = xl, y = O, 9 = 
~/2 (Fig. 2), 

i 
P = - - -  ~P1Q (xl)" ? 

Then,  a t  e a c h  p o i n t  o f  t h e  s u r f a c e  o f  t h e  s l i m  body  y = 5Y(x z) cos  8 t h e  p r e s s u r e  a t  t h e  
cross section x = x z is determined by the relation 

1 1 
(P = ~- - -  ~P~o (x~ + ~ 6 Y  (x~) cos  0) = u - ~P~o (x~) - ~=6p~o~ ( x 0  r ( z 0  cos  o .  

The pressure variation in the direction transverse to the body axis and along the surface of 
the body is, thus, the quantity 

- -  ecc6piox (x x) r (x z) (cos 0 + t) = ecz6M~ exp (--  (~Xl) Y (xl) (cos 0 + i) > O. 

This is all necessary to calculate the variation in pressure along the surface of the body 

(P --  Po) ~ ---- YPo ( - -  eP~o + 6Poz) = ?Po (ea6M~oqexp(--crx)Y(x)(c~ i)-[-6/o~) ' 

from which we obtain the following expression for the transverse force 
I 

= N/(pou~L 2) = cz6 .f ~ cos o r  (x) [4 cos or:= q- a (4 sin 2 0 --  i) - -  2eSMo2a exp (--  (~X) Y (x) (cos 0 + i)] dx dO. 
o 0 

Note that 

-2"' cos O (4 sin 2 0 - -  t) dO = 0 
0 o 

and the term of order ~8 ~ falls off, therefore 

1 1 

= 52a ~ S' (x) dx --  e62a ~ M~a exp (-- c~x) S (x) dx. 
0 0 

Carrying out the integration in the first term, we finally find 

I 

= 62aS (1) --  e 6 ~  ~ M~a exp (-- ax) S (x) dx. (22)  
0 

Here S(1) is the area of the rounded slice of the body. For complete determination of the 
transverse force it is still necessary to find the contribution to the transverse force re- 
sulting from the given pressure [i]. If the body is pointed, i.e., S(1) = 0, instead of (22) 
we write down 

I 
- ~ ~ N ~ --  ~6Za M;~ exp (-- clx) S (x) dx < 0. (23 )  

0 

The calculation of terms of order e6 and 5 2 in the parameter expansions is not provided 
due to their unwieldiness. The contributions to the transverse force due to these terms are 
of the orders g53~ and 6"~. In ordinary gas dynamics the transverse force, including second- 
order approximate terms, was given in [5]. 

We determine the torque of the transverse force with respect to the tip of the body x = 0 
in the form 

I I 

= 5 ~  .f xS'  (x) dx --  e6~-a j" xM~(7 exp (-- (rx) S (x) dx. 
o 0 

The f i r s t  t e r m  i s  i n t e g r a t e d  by p a r t s  

1 1 

�9 s '  (x)dx = S ( 1 ) -  S S(x)d~.  
o 0 

For a pointed body 

1 1 

7~ = - ~=~ ,I s {.~ a .  - ~6=~, j . i o ~  ~ p  { -  . * )  s (~) a~. 
0 o 
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TABLE 1 

YV, I~ ~ A o e N 1 N 2 N 

500 
1000 
2000 
3000 

2,321 0,0041 2,297 
0,0006 
0,0258 
0,1672 
0,3547 

0,2545 
--0,019 
--0,86i 
..... 5,587 

--ii,86 

0,235 
--0,606 
--5,332 

--ll,6 

TABLE 2 

Y h, H o A ~) s N 1 ~'V~ X 

3,319 0,0002 3,318 
0,0025 
0,0565 
0,320i 
0,483i 

0,2545 
--0,079 
--i,809 

--10,25 
--15,47 

500 
�9 - :  ~ o o o  ..... 

2 0 o 0  
2500 

0,175 
--1,555 
--9,994 

--15,2i 

We calculate N for a body of revolution, given by the information available in [2] con- 
cerning the flow parameters and the constants characterizing the physical properties of the 
gas. Let the generatrix of the body be given by the equation Y=x(i-x) (0~x< 0.9). We 
put 8 = 0.I, ~ = 0.i. The calculation results for molecular nitrogen and carbon monoxide 
are given in Tasl:es:1 and 2, where N l is the transverse force for the case of ordinary gas 
dynamics 62aS(f), N 2 is calculated by Eq. (23), and N - by Eq. (22) (the given transverse 
force values must be multiplied by 10-4). In the calculations it was assumed that M 0 = 2, 
p = 10 SPa, T = 430 K (for molecular nitrogen), T = 250 K (for carbon monoxide). 

Thus, unlike ordinary gas dynamics [i] a pointed slim body in a flow of a vibrationally 
excited gas experiences a transverse force, directed toward the transverse flow and tending 
to increase the angle of attack ~. 

The authors are grateful to V. A. Levin for his interest in this study. 
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